Program Outcomes (POs) Program Specific Outcomes (PSO) Course Outcomes (COs)

DEPARTMENT OF AGRICULTURE

DOON (P.G.) COLLEGE OF AGRICULTURE SCIENCE AND TECHNOLOGY SELAQUI, DEHRADUN, UTTARAKHAND.

M.Sc. (Agriculture) Agronomy

Programme Outcomes (POs)

Students of Post graduate with the M.Sc. (Ag.) Agronomy degree should be able to acquire.

PO-1:	In this program students gain knowledge about different kinds of principles of crop production practices and their management as well as their interrelation with allied branches of agriculture.
PO-2:	Detailed Knowledge on the subject to improve the farmers conditions by their contribution.
PO-3:	To gain appropriate scientific statistical methods and evaluations for decision making in various sector of agriculture production system.
PO-4:	The candidate can also pursue for Ph. D programme in ICAR and different state agriculture universities.
PO-5:	Students can work in government sector especially in teaching & research (ICAR and State agriculture University) Agriculture department, banking and private sectors like fertilizer companies, Herbicide companies, seed companies. etc.

PSO 1: Students are made enable to learn different systems of cropping in relation to oilseed, fibre, legumes and major cereals etc. along with farming system

PSO 2: Students are also enable to learn about fundamentals and advance aspects of agricultural crops and sustainable agriculture

PSO 3: Provide sound exposure to latest technological inclusions in Agriculture with global acceptance

I SEMESTER

SOA/AGRON/C-501: Statistical Methods and Experimental Designs 3 (2+1) Course Outcomes:

CO1:	Effectively express themselves in statistical terms either in written or oral
	form.
CO2:	Demonstrate the ability to think critically and effectively by utilizing the
	concept of statistical probability and experimental design.
	Demonstrate ability to integrate knowledge and idea in a coherent and
CO3:	meaningful manner especially to measures of quality of estimators. In
	particular, they should be able to use various experimental design
	techniques.
CO4:	Locate and use information to set up statistically, choose a suitable method,
	and perform statistical analysis.

SOA/AGRON/C-502: Principles of Crop Production 3 (2+1) Course Outcomes:

CO1:	It provides modern concept of crop production with specialization of cereals, pulses, oilseeds, tubers, medicinal, aromatic and underutilized crops.
CO2:	It provides knowledge about the Modern concept of crop production
CO3:	This course also providing knowledge about the tillage practices, resource conservation technologies and integrated farming system.
CO4:	By the study of this course students can also find out the economics of crop production
CO5:	They also know about the soil-plant relationships, yield potential of crops and cropping systemin relation to soil fertility status of soil.

SOA/AGRON/C-503: Principles and practices of weed management 3 (2+1) Course Outcomes:

CO1:	It enables the students to attain knowledge on basic principles and modern practices of weed management.
CO2:	They aware about the beneficial and harmful aspects of weeds.
CO3:	Students also well understood about the crop-weed interference, also about the viability, germination and dissemination of weeds.
CO4:	They also know about the Herbicides with their classification and mode of action in plants.

SOA/AGRON/C-504: Principles and Practices of Organic Farming 2 (1+1) Course Outcomes:

CO1:	It provides a wide knowledge about different kind of organic manures and
	their efficient utilization in various cropping systems.
CO2:	Enhance the student skill for organic farming, socio-economic impact,
	export potential of organic farming, control of weeds, diseases and other pest in organic farming.
CO3:	Familiarize with preparation and use of organic manures and biofertilizers,
	commercial fertilizers, time and methods of manures and fertilizer
	application in respect to soil fertility and productivity
CO4:	Student can also able to become entrepreneur of vermicomposting,
	biofertilizer, and other organic manure and fertilizer for the plants.
CO5:	It can also help to know about the biological preventive and control
	measures of weeds.

SOA/AGRON/C-505: Agronomy of Cereals Crops 2 (1+1)

Course Outcomes:

CO1:	Students will be able to identify and describe the growth stages of major
	cereal crops, including factors influencing growth and development.
CO2:	Ability to explain and apply best practices for crop establishment, including
	seedbed preparation, sowing methods, and optimum planting dates.
CO3:	Knowledge of nutrient requirements of cereal crops, including fertilization
	schedules, nutrient deficiencies, and management strategies for optimizing
	nutrient uptake.
CO4:	Knowledge of nutrient requirements of cereal crops, including fertilization
	schedules, nutrient deficiencies, and management strategies for optimizing
	nutrient uptake.
CO5:	Awareness of environmental impacts associated with cereal crop
	production, and knowledge of sustainable practices to minimize
	environmental degradation.

II SEMESTER

SOA/AGRON/C-507: Crop Ecology and Agro-meteorology 2 (1+1) Course Outcomes:

CO1:	Students will comprehend the interactions between crops and their
	environment, including factors such as temperature, light, humidity, and
	soil characteristics, and how these factors influence crop growth and
	development.
CO2:	Ability to analyse and explain how different crop species and varieties
	adapt to various ecological niches, including factors like climate, soil type,
	and topography.
	Knowledge of meteorological factors affecting crop production, including
CO3:	rainfall patterns, temperature regimes, solar radiation, and their spatial and
	temporal variability.
CO4:	Familiarity with crop simulation models and their application in predicting
	crop growth, yield, and responses to environmental factors under different
	scenarios.
CO5 :	Ability to communicate effectively about crop ecology and agro-
	meteorology concepts, research findings, and recommendations to
	stakeholders, including farmers, policymakers, and researchers.

SOA/AGRON/C-508: Cropping System and Sustainable Agriculture 2 (1+1) Course Outcomes:

CO1:	Students will be able to describe and analyze different cropping systems,
	including monoculture, polyculture, intercropping, and agroforestry, and
	their implications for soil health, biodiversity, and productivity.
CO2:	Knowledge of the benefits of crop rotation and diversification in enhancing
	soil fertility, pest and disease management, and resilience to climate
	variability.
	Understanding the principles and benefits of integrating livestock and crops
CO3:	in sustainable agriculture systems, including nutrient cycling, soil fertility
	management, and economic diversification.
CO4:	Ability to assess and implement practices that promote soil health,
	including conservation tillage, cover cropping, organic matter management,
	and soil erosion control measures.
CO5 :	Understanding the economic aspects of sustainable cropping systems,
	including cost-benefit analysis, market access, value chain development,
	and farm profitability.

SOA/AGRON/C-509: Advances in Soil fertility and Nutrient Management 3 (2+1)

Course Outcomes:

CO1:	Students will be able to describe and analyse different cropping systems,
	including monoculture, polyculture, intercropping, and agroforestry, and
	their implications for soil health, biodiversity, and productivity.
CO2:	Knowledge of the benefits of crop rotation and diversification in enhancing
	soil fertility, pest and disease management, and resilience to climate
	variability.
	Familiarity with agroecological principles such as biodiversity
CO3:	conservation, natural resource management, and ecosystem services in the
	context of sustainable cropping systems.
CO4:	Knowledge of balanced nutrient management practices, including fertilizer
	use efficiency, nutrient cycling, and the role of organic amendments in
	sustainable crop production.
CO5:	Ability to assess and implement practices that promote soil health,
	including conservation tillage, cover cropping, organic matter management,
	and soil erosion control measures.

SOA/AGRON/C-510: Agronomy of Pulses and oil Seed Crops 3 (2+1) Course Outcomes:

CO1:	Ability to critically evaluate research findings and apply innovative
	agronomic practices and technologies to enhance productivity, quality, and
	profitability of pulse and oilseed crops.
CO2:	Students will be able to describe the growth stages and development
	processes of pulses and oilseed crops, including factors influencing growth
	patterns and yield formation.
	Knowledge of selecting appropriate varieties of pulse and oilseed crops
CO3:	based on agro-climatic conditions, market demand, and seed quality
	parameters.
CO4:	Understanding and applying best practices for seedbed preparation, seed
	treatment, and sowing methods suitable for pulse and oilseed crops.
CO5:	Knowledge of water requirements at different growth stages of pulse and
	oilseed crops, irrigation scheduling techniques, and strategies for water
	conservation and efficiency.

SOA/AGRON/C-511: Agronomy of Medicinal and Aromatic Crops 3 (2+1) Course Outcomes:

CO1:	Students will be able to identify and classify medicinal and aromatic plants
	based on their botanical characteristics and taxonomical classification.
CO2:	Understanding the growth stages, phenology, and physiological processes of medicinal and aromatic crops, including factors influencing their growth and yield.
	Ability to assess and manage soil fertility, pH, drainage, and other
CO3:	environmental factors critical for the growth and development of medicinal
	and aromatic crops.
CO4:	Understanding methods of processing medicinal and aromatic crops to
	extract or preserve active ingredients, and knowledge of value-added
	products and market opportunities.
CO5 :	Knowledge of optimal harvesting times, techniques for harvesting
	medicinal and aromatic plants to preserve active compounds, and post-
	harvest handling practices to maintain quality.

Semester III

SOA/AGRON/C-513: Principles and Practices of Water Management 4 (2+2) Course Outcomes:

CO1:	Students will be able to assess water availability, quality, and demand in
	agricultural and environmental settings using appropriate methods and
	tools.
CO2:	Understanding fundamental hydrological processes, including precipitation,
	evapotranspiration, infiltration, runoff, and groundwater recharge, and their
	relevance to water management.
	Knowledge of techniques and practices to improve water use efficiency in
CO3:	agriculture, including irrigation scheduling, precision irrigation
	technologies, and soil water management.
CO4:	Understanding methods for managing and improving water quality in
	agricultural and environmental systems, including strategies for minimizing
	nutrient leaching and contamination.
CO5:	Ability to design and evaluate irrigation systems appropriate for different
	crops and soil types, including surface irrigation, sprinkler irrigation, and
	drip irrigation systems.

SOA/AGRON/C-514: Agronomy of Commercial Crops 3 (2+1) Course Outcomes:

CO1:	Students will be able to describe and understand the growth stages, physiological processes, and factors influencing the growth and
	development of commercial crops.
CO2:	Knowledge of selecting appropriate varieties or cultivars of commercial
	crops based on agro-climatic conditions, market demand, and quality
	parameters.
	Understanding nutrient requirements, fertilizer application methods,
CO3:	micronutrient management, and strategies for optimizing nutrient use
	efficiency in commercial crop production.
CO4:	Identification of common weeds, pests, and diseases affecting commercial
	crops, and implementation of integrated pest management (IPM) strategies
	to minimize crop losses.
CO5:	Understanding optimal harvesting times, techniques for harvesting
	commercial crops to maximize yield and quality, and post-harvest handling
	practices to preserve crop quality and market value.

SOA/AGRON/C-515: Dry land Farming 2 (1+1)

Course Outcomes:

CO1:	Understand concepts and characteristics of dryland farming and rainfed
	farming with the dimension of dryland farming in Indian Agriculture.
CO2:	Understand dryland farming and rainfed farming with reference to soil and
	climatic parameters including rainfall characteristics.
	Comprehend stress physiology, resistance and adaptation of crop plants to
CO3:	drought and drought management strategies and preparation of appropriate
	crop plans for dryland areas.
CO4:	Comprehend watershed management, techniques and practices of soil
	moisture conservation and concept of conservation tillage.

SOA/AGRON/C-516: Management of Problem Soils 1 (1+1)

Course Outcomes:

CO1:	The students have knowledge with different types of problematic soils.
CO2:	To make them aware of different factors responsible for their formation and properties associated with these soils.
CO3:	Knowledge of various reclamation and management practices for the improvement of problematic soils.

SOA/AGRON/C-517: Farming Systems 2 (1+1)

Course Outcomes:

CO1:	To prepare cropping schemes and design and evaluate cropping system and
	workout input requirements for crops.
CO2:	To understand interaction between different farm enterprises.
	T. 1.1. C. 1.00
	To prepare integrated farming system models for different eco systems and
CO3:	To prepare integrated farming system models for different eco systems and resource recycling among different farm enterprises.

SOA/AGRON/SS-01 3 (2+1)

Course Outcomes:

CO1:	To enable the students for application of postharvest technologies in their
	career through practical knowledge.
CO2:	To provide skill on post-harvest loss reduction through processing of
	agricultural crops.
	To facilitate the students with knowledge and activities of food processing
CO3:	industries and drive towards entrepreneurship.
CO4:	To provide skill for problems occurring in harvesting, threshing, transport,
	drying, milling and marketing.

Semester-IV

SOA/GPB/C-520: Thesis 08 (0+8)

Course Outcomes:

CO1:	An independent and sustained critical investigation and evaluation of a
	chosen research topic relevant to environment and society
CO2:	Engage in systematic discovery and critical review of appropriate and
	relevant information sources
	Appropriately apply qualitative and/or quantitative evaluation processes to
CO3:	original data
CO4:	Students able to communicate research concepts and contexts clearly and
	effectively both in writing and orally

SOA/GPB/C-521: Project

08(0+8)

Course Outcomes:

CO1:	To gain knowledge on bio-technology in agriculture, eco-restoration.
CO2:	To understand advanced concepts of crop growth and productivity in
	relation to climate change.
CO3:	To acquire knowledge on modern concepts in tillage and farm
	mechanization.

SOA/GPB/C-522: Seminar

1 (0+1)

Course Outcomes:

CO1:	To develop teaching and communication skills
CO2:	Develops confidence in the students for delivering technical presentation
CO3:	Skill to prepare presentation

SOA/AGRON/E -523: Seed Production Technology of Field Crops 2 (1+1) Course Outcomes:

CO1:	Acquire knowledge about the complete seed production technology, extraction and post-extraction processing of Field Crops
CO2:	Adoption of seed production of Field Crops as entrepreneur
CO3:	Appreciate the scope and scenario of seed production of Field Crops in India

SOA/AGRON/E -524: Soil Conservation and watershed Management 2 (1+1) Course Outcomes:

CO1:	To understand the major areas of soil degradation in India and application
	of agro-techniques in conserving the soil.
CO2:	To develop afforestation and other biological measures to conserve soil
	and water holding capacity.
CO3:	To understand the mechanical measures and other measures of soil
	conservation.

SOA/AGRON/E -525: Agronomy of Fodder and Pasture crops 2 (1+1) Course Outcomes:

CO1:	To get the knowledge about cultivation practices of fodder crops.
CO2:	To understand the concept of fodder preservation techniques.
CO3:	Acquire knowledge about the value addition of poor-quality fodder.